211
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Setting up multivariate specifications on critical raw material attributes to ensure consistent drug dissolution from high drug-load sustained-release matrix tablet

, , , , , , & show all
Pages 1733-1743 | Received 06 Feb 2018, Accepted 07 Jun 2018, Published online: 03 Sep 2018
 

Abstract

The purpose of this study was to describe the raw material variability that influenced the in-vitro dissolution behavior of high drug-load sustained-release matrix tablet and to ensure the consistent quality of the final product. The Panax notoginseng saponins (PNS) – hydroxypropyl methylcellulose – anhydrous lactose – magnesium stearate (57:20:23:0.5%, w/w) was used as the model formulation. PNS extract powders with lot-to-lot and source-to-source differences were collected to cover the common cause variations and their physicochemical properties were characterized by the chromatographic fingerprints and the SeDeM expert system. It was found that the release behavior of active pharmaceutical ingredients (APIs) in PNS from different batches exhibited considerable variations. Latent variable modeling results demonstrated that the physical properties of raw materials played major roles in predicting the drug dissolution. PNS extracts with high specific surface area, the width of particle size distribution and hygroscopicity or low moisture content led to an increase in drug release. In order to perform efficient pass/fail judgments for incoming new materials, multivariate specifications of critical material attributes (CMAs) were established and the multivariate design space in line with the quality by design (QbD) principles was explored to achieve the release target.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors are thankful to the National Natural Science Foundation of China [No. 81403112] for the generous financial supports.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.