119
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of hydrophilic and hydrophobic polymers on permeation of S-amlodipine besylate through intercalated polymeric transdermal matrix: 3(2) designing, optimization and characterization

, , & ORCID Icon
Pages 669-682 | Received 10 Sep 2018, Accepted 22 Dec 2018, Published online: 31 Jan 2019
 

Abstract

Objective: Innovation in material science has made it possible to fabricate a pharmaceutical material of modifiable characteristics and utility, in delivering therapeutics at a sustained/controlled rate. The objective of this study is to design and optimize the controlled release transdermal films of S-Amlodipine besylate by intercalating hydrophilic and hydrophobic polymers.

Methods: 3(2) factorial design and response surface methodology was utilized to prepare formulations by intercalating the varied concentration of polymers(A) and penetration enhancer(B) in solvent. The effect of these independent factors on drug release and flux was investigated to substantiate the ex-vivo, stability and histological findings of the study.

Results: FTIR, DSC revealed the compatibility of drug with polymers; however, the semicrystallinity in drug was observed under PXRD. SEM micrographs showed homogeneous dispersion and entanglement of drug throughout the matrix. Results from the permeation study suggested the significant effect of factors on the ex vivo permeation of drug. It was observed that drug release was found to be increased with an increase in hydrophilic polymer concentration and PE. The formulations having polymers (EC:PVPK-30) at 7:3 showed maximum drug release with highest flux (102.60 ± 1.12 µg/cm2/h) and permeability coefficient (32.78 ± 1.38 cm/h). Significant effect of PE on lipid and protein framework of the skin was also observed which is responsible for increased permeation. The optimized formulation was found to be stable and showed no-sign of localized reactions, indicating safety and compatibility with the skin.

Conclusion: Thus, results indicated that the prepared intercalated transdermal matrix can be a promising nonoral carrier to deliver effective amounts of drug.

Acknowledgement

The authors express their sincere thanks to the management of IFTM University, Moradabad, Uttar Pradesh, India, for providing necessary facilities to carry out the above research work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.