631
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies

&
Pages 839-851 | Received 14 Aug 2018, Accepted 24 Jan 2019, Published online: 12 Feb 2019
 

Abstract

Background: Multiple sclerosis (MS) is one of the most severe autoimmune disorder of the central nervous system (CNS).

Objective: The present research work was aimed to formulate and investigate teriflunomide (TFM)-loaded intranasal (i.n.) nanostructured lipid carriers (NLC) for the treatment of multiple sclerosis (MS).

Methods: The TFM-loaded NLC (TFM-NLC) nanoparticles were prepared by melt emulsification ultrasonication method using biodegradable and biocompatible polymers. The Box–Behnken statistical design was applied to optimize the formulation. The optimized NLC formulation was subjected to evaluate for particle size, entrapment efficiency (%), in vitro and ex vivo permeation. The safety and efficacy of optimized formulations were demonstrated using pharmacodynamic, subacute toxicity and hepatotoxicity data.

Results: Experimental data demonstrated that optimized NLC formulation (F17) showed significant size (99.82 ± 1.36 nm), zeta potential (−22.29 ± 1.8 mV) and % entrapment efficiency (83.39 ± 1.24%). Alternatively, ex vivo permeation of TFM mucoadhesive NLC (TFM-MNLC) and TFM-NLC was observed 830 ± 7.6 and 651 ± 9.8 µg/cm2, respectively. Whereas, TFM-MNLC shows around 2.0-folds more Jss than the TFM-NLC. Finally, TFM-MNLC (i.n.) formulation produced the rapid remyelination in cuprizone-treated animals and decreases the number of entries in open compartment of EPM when compared with negative control and TFM-NLC (oral) animals. Simultaneously, the nanoformulation did not reflect any gross changes in hepatic biomarkers and subacute toxicity when compared with control.

Conclusions: Hence it can be inferred that the nose-to-brain delivery of TFM-MNLC can be considered as effective and safe delivery for brain disorders.

Disclosure statement

The authors declare that they have no conflicts of interest.

Additional information

Funding

This work was supported by the Savitribai Phule Pune University [SPPU] under the form of research stipend [Ref/2829].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.