221
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive understanding of lowly-hydrolyzed polyvinyl alcohol-based ternary solid dispersions with the use of a combined mixture-process design

ORCID Icon, , , , &
Pages 1599-1609 | Received 06 Jan 2019, Accepted 30 Jun 2019, Published online: 13 Aug 2019
 

Abstract

We recently reported lowly hydrolyzed polyvinyl alcohol (L-PVA, 70–74% hydrolyzed, about 580 polymerized, JR-05) as a promising matrix for hot-melt extrusion (HME) due to its unique micelle formation ability compared to the most commonly used PVA (87–89% hydrolyzed, about 580 polymerized). In the present study, we focused on the effect of composition [indomethacin (IND), L-PVA, sorbitol] and process parameters (temperature and screw speed) on each response, i.e. processing torque, and physicochemical properties such as residual crystallinity, residual ratio, and area under the dissolution curve (AUDC) in supersaturated solution using a HME by applying the design of experiment (DoE) approach. To overcome the poor processability of L-PVA, given its semicrystalline nature, we applied sorbitol as a plasticizer and systematically and simultaneously evaluated its influence on the outputs based on the mixture design combined with process factors. Few studies have focused on comprehensive evaluation of the composition and HME process conditions because obtaining a design space requires numerous experiments. We found that incorporating sorbitol into the L-PVA greatly improved the processing torque. However, sorbitol negatively influenced the degree of residual crystallinity and the AUDC of IND. Lastly, we established a laboratory-scale design space that could achieve high supersaturation and ensure adequate miscibility between each component, using an acceptable processing torque for HME, by applying the minimum amount of sorbitol. These fundamental results suggest that sorbitol maximizes the potency of L-PVA as a carrier in HME.

Acknowledgements

The authors acknowledge Central Pharmaceutical Research Institute (CPRI), Japan Tobacco Inc., for supporting the instrumental measurements. The authors are thankful to Mr. Shotaro Kawada and Mr. Masatoshi Kawanishi from Japan VAM & POVAL Co., Ltd. for providing the sample and technical information of PVAs.

Disclosure statement

The authors report no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.