149
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Development of Darunavir proliposome powder for oral delivery by using Box–Bhenken design

, &
Pages 732-743 | Received 18 Oct 2019, Accepted 01 Apr 2020, Published online: 06 May 2020
 

Abstract

The aim of this study is to develop Darunavir (DRV) proliposome powder for oral delivery. Darunavir-loaded oral proliposome powder (OPP) was prepared by a solvent evaporation technique with varying independent variables at three different levels. Based on different levels, proliposome powder formulation was optimized by using Box–Behnken design. The formulations were analyzed for its size distribution, entrapment efficiency, and surface morphology. Optimized proliposome batch A was evaluated for physical parameter, morphological parameters, entrapment efficiency, followed by in vitro, ex vivo, and in vivo studies. Oral proliposome powder showed good micromeritic properties with angle of repose was less than 30°, Carr’s index and Hausner’s ratio were also less than 21 and 1.25, respectively. The mean size of the vesicles was in the range of 180–290 nm. The assay and entrapment efficiency of pro-liposome powder formulations were 79.00 ± 0.2 and 93.46 ± 0.2%, respectively. In vitro release of DRV proliposome powder was 78.17 ± 0.1% after 24 h which shows good release from the vesicle of proliposome. Ex vivo permeation study shows 58.11% enhancement which shows good permeation. The optimize batch A of proliposome powder indicated 50% enhancement in the relative bioavailability as compared to the DRV suspension. The results showed that proliposome powder containing DRV can efficiently deliver in to the blood stream. This drug delivery system has been designed as a novel platform for potential oral delivery of drugs having poor water solubility and high first-pass metabolism.

Acknowledgements

The authors acknowledge the help of Lupin industry, Pune for providing the gift sample of Darunavir.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.