645
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Microneedle system: a modulated approach for penetration enhancement

& ORCID Icon
Pages 1183-1192 | Received 04 Jun 2021, Accepted 07 Oct 2021, Published online: 22 Oct 2021
 

Abstract

The microneedles show advantages over transdermal drug delivery systems on account of better skin permeation bypassing the stratum corneum. To increase the flux of permeation, penetration enhancement techniques like physical and chemical methods are combined with a trans-epidermal delivery system across the skin causing minimal pain. These techniques include iontophoresis, sonophoresis, and electroporation for physical enhancement of drug delivery via topical route by either disrupting the structure of the stratum corneum or by creating pores/micro-channels within the skin. The use of chemical penetrants such as ethanol, lipids, surfactants, and terpenes improves the release kinetics by mechanisms like fluidization of lipids, denaturation of proteins, etc. A combination of microneedles and these techniques show a significant increase in the permeability of drugs across the skin by 5–10 times compared to microneedles alone. This review article focuses on various advanced strategies like the use of drug–polymer complexes, application of ultrasound frequency or tolerable electric current, formation of nano-formulations, etc. with microneedle delivery for transportation of high payload of actives, macromolecules, antibodies, gene, proteins, and peptides. In the near future, microneedle systems will offer potential targeted drug delivery, self-sealable administration across the skin, and minimally invasive vaccine transportation in cancer, diabetes, Alzheimer’s, and cardiovascular diseases.

    Highlights

  • Physical penetration enhancement techniques: iontophoresis, electroporation, and sonophoresis.

  • Chemical penetration enhancers: polymers, lipids, surfactants.

  • Strategies to use microneedle system with penetration enhancement techniques.

  • The significant difference in the penetration ability of high payload actives.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.