211
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Poly(maleic anhydride-alt-1-octadecene)-based bioadhesive nanovehicles improve oral bioavailability of poor water-soluble gefitinib

, , , , , , , & show all
Pages 109-116 | Received 10 Feb 2022, Accepted 30 Jun 2022, Published online: 14 Jul 2022
 

Abstract

The poor water solubility and inadequate oral bioavailability of gefitinib (Gef) remain a critical issue to achieve the therapeutic outcomes. Herein, we designed a poly(maleic anhydride-alt-1-octadecene) (PMA/C18) based lipid nanovehicle (PLN) to improve the intestinal absorption and oral bioavailability of poorly water-soluble Gef. PLN was nanometer-sized particles, and Gef was dispersed in the PLN formulation as amorphous or molecular state. At 4 h of oral administration, the tissue concentration of Gef in duodenum, jejunum, and ileum was profoundly enhanced 3.37-, 8.94-, and 8.09-fold by PLN when comparing to the counterpart lipid nanovehicle. Moreover, the oral bioavailability of Gef was significantly enhanced 2.48-fold by the PLN formulation when comparing to the free drug suspension. Therefore, this study provides an encouraging bioadhesive delivery platform to improve the oral delivery of poorly water-soluble drugs.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Financial support was from the Shanghai Science and Technology Inovation Program (19431900800).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.