320
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microneedles assisted controlled and improved transdermal delivery of high molecular drugs via in situ forming depot thermoresponsive poloxamers gels in skin microchannels

ORCID Icon, , ORCID Icon &
Pages 265-278 | Received 21 Feb 2022, Accepted 25 Jul 2022, Published online: 05 Aug 2022
 

Abstract

Skin is considered as an attractive route for variety of drug molecule administration. However, it is proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across stratum corneum layer. In the current study, novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles (MNs) arrays. The phase transition of poloxamers at various concentrations from sol–gel was evaluated using AR2000 rheometer to confirm MNs-assisted in situ forming depots. Temperature test confirmed gelation between 32 and 37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedle arrays (600 µm) prepared from Gantrez S-97, PEG10000 and gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From in situ dissolution profile, gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight® OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From in vitro permeation, it was concluded that 20% w/w PF127® gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of gelatin MNs.

Acknowledgements

S. Khan and M. U. Minhas highly acknowledge Higher Education Commission of Pakistan for providing financial support for conducting this study through IRSIP at the School of Pharmacy, Queens University Belfast UK.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.