251
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico structural inhibition of ACE-2 binding site of SARS-CoV-2 and SARS-CoV-2 omicron spike protein by lectin antiviral dyad system to treat COVID-19

ORCID Icon &
Pages 539-551 | Received 08 Feb 2022, Accepted 11 Oct 2022, Published online: 27 Oct 2022
 

Abstract

Spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds angiotensin-converting enzyme-2 (ACE-2) receptors via its receptor-binding domain (RBD) and mediates virus-to-host cell fusion. Recently emerged omicron variant of SARS-CoV-2 possesses around 30 mutations in spike protein where N501Y tremendously increases viral infectivity and transmission. Lectins interact with glycoproteins and mediate innate immunity displaying antiviral, antibacterial, and anticarcinogenic properties. In this study, we analyzed the potential of lectin, and lectin–antibody (spike-specific) complex to inhibit the ACE-2 binding site of wild and N501Y mutated spike protein by utilizing in silico molecular docking and simulation approach. Docking of lectin at reported ACE-2 binding spike-RBD residues displayed the ZDock scores of 1907 for wild and 1750 for N501Y mutated spike-RBD. Binding of lectin with antibody to form proposed dyad complex gave ZDock score of 1174 revealing stable binding. Docking of dyad complex with wild and N501Y mutated spike-RBD, at lectin and antibody individually, showed high efficiency binding hence, effective structural inhibition of spike-RBD. MD simulation of 100 ns of each complex proved high stability of complexes with RMSD values ranging from 0.2 to 1.5 nm. Consistent interactions of lead ACE-2 binding spike residues with lectin during simulation disclosed efficient structural inhibition by lectin against formation of spike RBD–ACE-2 complex. Hence, lectins along with their ability to induce innate immunity against spike glycoprotein can structurally inhibit the spike-RBD when given as lectin–antibody dyad system and thus can be developed into a dual effect treatment against COVID-19. Moreover, the high binding specificity of this system with spike-RBD can be exploited for development of diagnostic and drug-delivery systems.

Disclosure statement

The authors have no relevant financial or non-financial interests to disclose.

Data availability statement

The data that support the findings of this study are available in the supplementary material of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.