553
Views
22
CrossRef citations to date
0
Altmetric
Articles

Long-term effect of manure and mineral fertilizer application on the distribution of organic nitrogen fractions in soil under a rice–wheat cropping system

, &
Pages 705-714 | Received 01 Oct 2009, Accepted 24 Apr 2010, Published online: 16 Jun 2011
 

Abstract

A long-term experiment was used to evaluate the effect of integrated nutrient management on the distribution of soil organic N fractions and their contribution to N nutrition of a rice–wheat system. Continuous application of mineral fertilizers, alone or in combination with organic manures for 7 years, led to a marked increase in total N, hydrolysable N (amino acid-N, amino sugar-N, ammonia-N, hydrolysable unknown-N) and non-hydrolysable N compared with their original status in soil. However, continuous rice–wheat cropping without any fertilization resulted in depletion of total N, hydrolysable N and non-hydrolysable N by 21.3, 23.5 and 15.1% over their initial status in surface soil. The effect of press mud (PM) treatment was more pronounced in increasing total and hydrolysable N compared with farmyard manure (FYM) or green manure (GM) treatment. Incorporation of PM, FYM and GM along with mineral fertilizers increased the total N content by 32.8, 18.3 and 5.1% and that of hydrolysable N by 25.7, 19.6 and 9.5%, respectively, over mineral fertilizer treatment. Among the most important fractions, amino sugar-N, amino acid-N and ammonia-N were found to be most the important fractions contributing to grain yield and nitrogen uptake of rice and wheat crops.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.