292
Views
4
CrossRef citations to date
0
Altmetric
Articles

Chemical and microbiological parameters for the characterization of maturity of composts made from farm and agro-industrial wastes

&
Pages 833-845 | Received 17 Jul 2010, Accepted 05 Jan 2011, Published online: 29 Jul 2011
 

Abstract

Bioconversion of farm wastes with agro-industrial wastes into enriched compost is an important possibility in need of research. In this article, changes in chemical and microbiological parameters were evaluated to determine the maturity of composts prepared from mixture of farm and agro-industrial wastes over a period of 150 days. Seven different composts were prepared by using a mixture of different farm wastes with or without enrichment with rock phosphate (RP), agro-industrial wastes and the inoculation of microorganisms. As composting proceeded, the organic C, water-soluble C (WSC), bacterial and fungal counts decreased, whereas total N, P, electrical conductivity (EC) and actinomycetes count increased gradually. Our results suggest that WSC <1%, C:N ratio < 20, neutral pH and a decrease in bacteria and fungal counts, along with an increase in actinomycetes count and stability at the end of composting, may be accepted as an indicator of compost maturity. Changes in organic C, EC, total N and P concentrations over time also proved to be reliable indicators of the progress of the composting process for establishing stability and compost maturity. Addition of RP, agro-industrial wastes and inoculation of microorganisms showed potential in improving the N and P contents of the composts.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.