1,436
Views
39
CrossRef citations to date
0
Altmetric
Articles

Long-term fertilization effects on crop yields, soil fertility and sustainability in the Static Fertilization Experiment Bad Lauchstädt under climatic conditions 2001–2010

&
Pages 1041-1057 | Received 13 Apr 2012, Accepted 05 Jun 2012, Published online: 01 Aug 2012
 

Abstract

The Static Fertilization Experiment Bad Lauchstädt (1902) consists of a crop rotation of sugar beets, spring barley, potatoes and winter wheat. Three farmyard manure (FYM) treatments and six mineral fertilizer treatments are combined orthogonally. Comparing the first and last decades, crop yields nearly doubled. In unfertilized plots, yields and N uptake by crops also increased when comparing first and last decades. On average for the decade 2001–2010, N uptake in unfertilized plots amounted 51.6 kg ha−1. Although soil organic carbon (SOC) levels for unfertilized plots remain almost unchanged, SOC increases slowly in the most highly fertilized treatment, resulting in a gradual widening of differences in SOC between the most extreme treatments to 0.952%. Climate change and increased harvesting and root residues due to rising yields are suggested as an explanation. Except for the plot with the highest application of mineral and organic fertilizer, in all treatments more N was taken up by crops than was applied by fertilizers. Higher FYM input leads to more unfavourable N balances because N release from FYM cannot be controlled. Considering atmospheric N input, only in the exclusively mineral fertilized treatment is N balanced out. Similar results are found for C balances: the exclusively mineral fertilized treatment shows the most favourable C balance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.