566
Views
17
CrossRef citations to date
0
Altmetric
Articles

Productivity, nutrient uptake and post-harvest soil fertility as influenced by cotton-based cropping system with integrated nutrient management practices in semi-arid tropics

, &
Pages 87-101 | Received 02 Aug 2012, Accepted 25 Jan 2013, Published online: 14 Jun 2013
 

Abstract

Field experiments were conducted on cotton to evaluate the different cotton-based intercropping system along with balanced nutrient management practices on enhancing cotton productivity. Cropping systems have been considered as main plots and nutrient management practices have been considered as subplots. The results showed that cotton + onion system recorded the highest cotton equivalent yield (CEY) of 2052 and 1895 kg ha−1 which was on par with cotton intercropped with dhaincha, which recorded 2010 and 1894 kg of CEY ha−1 in both the seasons. Combined application of 100% recommended NPK with bioinoculants (S5) registered highest CEY in both the seasons. Cotton intercropped with dhaincha (M2) recorded highest uptake of N, P, and K. Among the nutrient management practices, application of 100% recommended NPK with bioinoculants (S5) showed highest uptake of N, P, and K. A similar trend was noticed in the post-harvest soil fertility too and it is significantly higher under cotton + dhaincha and application of 100% recommended NPK with bioinoculants treatment compared to 100% recommend NPK alone. It could be concluded from these results that crop productivity can be improved and soil fertility status can be sustained with integrated plant nutrient management practices.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.