353
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Predicting ESP and SAR by artificial neural network and regression models using soil pH and EC data (Miankangi Region, Sistan and Baluchestan Province, Iran)

, &
Pages 127-138 | Received 29 Nov 2014, Accepted 03 Mar 2015, Published online: 05 May 2015
 

Abstract

Monitoring exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR) variability in soils is both time-consuming and expensive. However, in order to estimate the amounts of amendments and land management, it is essential to know ESP and SAR variations and values in sodic or saline and sodic soils. Thus, presenting a method which uses easily obtained indices to estimate ESP and SAR indirectly is more optimal and economical. Input data of the current research were 189 soil samples collected based on a regular networking approach from Miankangi region, Sistan plain, Iran. Then, their physicochemical properties were measured. Results showed that SAR = 3.8 × ln(EC) + 22.83 × ln(pH) – 44.37, (R2 = 0.63), and ESP = 3.98×ln(EC) + 36.88(pH) – 56.98 (R2 = 0.78) are the best regression models for estimating SAR and ESP, respectively. Moreover, multilayer perceptron (MLP), which explains 95–97% of parameters of soil sodicity using EC and pH as inputs, was the best neural network model. Therefore, MLP could be applied for ESP and SAR evaluation with high accuracy in the Miankangi region.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.