973
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of sodium tetraphenylboron (NaBPh4) as a soil test of potassium availability

&
Pages 468-476 | Received 06 Apr 2016, Accepted 18 Jul 2016, Published online: 12 Aug 2016
 

ABSTRACT

Non-exchangeable potassium (Knex) contributes to soil K availability and several extractants are used to access its contribution. This study evaluated sodium tetraphenylboron (NaBPh4) as a soil test of K availability in 20 soils from Northern Greece. Winter wheat (Triticum aestivum L. var. ‘Yecora’) was sown in a greenhouse pot experiment and five cropping cycles were carried out until K-depletion. Soils were analyzed with NH4OAc and NaBPh4 (1 and 5 min incubation periods). Critical levels of K ranged between 130–140 and 330–340 mg K kg−1 of soil for NH4OAc and NaBPh4 (1 min incubation period), respectively, and between 32 and 35 g K kg−1 of wheat dry matter. NaBPh4-K (1 min) related better with K concentration and uptake compared to NH4OAc for each cropping cycle (r2 = 0.45–0.83 and 0.44–0.89) and for all soils (r2 = 0.58 and 0.51). Similar results obtained in soils low in exchangeable K (r2 = 0.41 and 0.39). Correlation between NH4Oac- and NaBPh4-extractable K was weaker among soils below the critical level (r = 0.70) compared to those above (r = 0.93). Inclusion of illitic K and cation exchange capacity in a multiple linear regression between NH4OAc- and NaBPh4-extractable K showed that they significantly contributed to NaBPh4-extractable K.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.