375
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr(VI) stress

, , , &
Pages 1058-1069 | Received 01 Aug 2015, Accepted 09 Nov 2016, Published online: 09 Dec 2016
 

ABSTRACT

Soil contaminated by chromium (Cr) is a major concern for sustainable agriculture. Considering this as a basis, the present study was designed to isolate Cr(VI)-reducing and plant growth-promoting bacterial strain from contaminated sampling sources. In this study, Rhizobium strain ND2 was isolated from the root nodules of Phaseolus vulgaris grown in leather industrial effluent contaminated soil. The strain ND2 exhibited strong resistance to different heavy metals and reduced 30 and 50 µg ml−1 concentrations of Cr(VI) completely after 80 and 120 h of incubation, respectively, as well as chromium adsorption and immobilization were confirmed by scanning electron microscopic equipped with energy X-ray spectroscopy. In addition, the strain produced 21.73 and 36.86 µg ml−1 of indole-3-acetic acid at 50 and 100 µg ml−1 of L-tryptophan supplimentations, respectively. Strain ND2 positively affected the exo-polysaccharide, ammonia, protease and catalase production and stimulated root length of various test crops under Cr(VI) stress. Moreover, Rhizobium strain ND2 has the potential to colonize the diverse agricultural crops. Thus, the present findings strongly suggested that the multipotential properties of ND2 could be exploited for bioremediation of contaminated sites with Cr(VI) as well as potential bio fertilizer for enhancing the agricultural productivity.

Acknowledgments

We would like to express our heartfelt thanks to Plant and Microbial Biotechnology Laboratory members for their immense help and Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India, for providing laboratory facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.