288
Views
3
CrossRef citations to date
0
Altmetric
Article

Integrated tillage-water-nutrient management effects on selected soil physical properties in a rice-wheat system in the Indian subcontinent

, , , &
Pages 132-145 | Received 28 Sep 2016, Accepted 06 May 2017, Published online: 28 May 2017
 

ABSTRACT

We studied few soil physical indicators after eighth cropping cycle of rice-wheat. The experiment was laid out in split-split plot design with two tillage (rice: puddling vs. non-puddling; wheat: conventional tillage vs. no-tillage), three water management (rice: submergence vs. drainage; wheat: five/three/two irrigations) and nine nutrient (N) management treatments (inorganic vs. integrated nutrient management). The bulk density (t m−3) in non-puddled soil (1.33) was significantly less than puddled soil (1.59); while mean weight diameter (0.55 mm) and saturated hydraulic conductivity (0.43 cm h−1) were higher in the former treatment. Irrigation after 3-days of drainage was found to enhance soil aggregation (0.54 mm) and moisture retention (71.6%) during rice. No-tillage in wheat had overall positive impact. Organic sources of nutrients increased soil water retention (biofertilizer for rice), water conductivity and aggregate stability (combined organics for rice and wheat). Interactions between (tillage × N), (water × N), (tillage × water) revealed crop-wise variations. The saturated hydraulic conductivity and soil aggregation for rice; and bulk density, water retention and saturated hydraulic conductivity for wheat were identified as sensitive soil physical indicators. We suggest an effective combination of no tillage and intermittent irrigation with integrated nutrient management for sustaining soil physical quality in rice-wheat rotation.

Acknowledgements

We convey special thanks to Dr. A.K. Singh (former PC, WTC, IARI). The first author is grateful to IARI, New Delhi for awarding Senior Research Fellowship during her doctoral programme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.