896
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of soil properties using a hyperspectral remote sensing method

ORCID Icon, , , &
Pages 546-559 | Received 19 Feb 2017, Accepted 15 Jul 2017, Published online: 24 Aug 2017
 

ABSTRACT

Quickly and accurately mapping soil properties is critical for agricultural, forestry and environmental management. In this study, a new hyperspectral remote sensing method of soil property prediction was developed and validated in Stipa purpurea dominated alpine grasslands located in Shenzha County of the Qiangtang Plateau, northwestern Qinghai-Tibet Plateau. Hyperspectral data were collected in a total of 67 sample points. At the same time, soil samples were obtained at the locations and soil properties including organic carbon, total nitrogen, total potassium and total phosphorus were measured. The correlations of the soil properties with original bands and enhanced spectral variables derived from both field and satellite hyperspectral data were analyzed. Regression models that explained the relationships were further developed to map the soil properties. The results showed that the stepwise regression models based on the satellite hyperspectral image derived enhanced spectral variables produced reasonable spatial distributions of the soil properties and the relative RMSE values of 68.9, 46.3, 31.4 and 45.5% for soil organic carbon, total nitrogen, total phosphorus and total potassium, respectively. Thus, this study implied that the hyperspectral data based method provided great potential to predict the soil properties.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.