267
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effects of a ‘one film for 2 years’ system on the grain yield, water use efficiency and cost-benefit balance in dryland spring maize (Zea mays L.) on the Loess Plateau, China

ORCID Icon, , , &
Pages 939-952 | Received 04 Jul 2017, Accepted 13 Oct 2017, Published online: 26 Oct 2017
 

ABSTRACT

‘One film for 2 years’ (PM2) has been proposed as a practice to control the residual film pollution; however, its effects on grain-yield, water-use-efficiency and cost-benefit balance in dryland spring maize production have still not been systematically explored. In this study, we compared the performance of PM2 with the annual film replacement treatment (PM1) and no mulch treatment (CK) on the Loess Plateau in 2015–2016. Our results indicated the following: (1) PM2 was effective at improving the topsoil moisture (0–20 cm) at sowing time and at seedling stage, but there was no significant influence on soil water storage, seasonal average soil moisture or evapotranspiration; (2) PM2 induced significantly higher cumulative soil temperatures compared to CK, and there was no significant difference between PM2 and PM1; (3) no significant differences were identified in grain-yield and water-use-efficiency between PM1 and PM2, and compared to CK, they improved by 16.3% and 15.5%, respectively; (4) because of lower cost of plastic film, tillage, film laying and remove in PM2, economic profits improved by 21% and 70% compared to PM1 and CK. This research suggested that PM2 was effective at alleviating the spring drought and was beneficial in reducing poverty traps in dryland.

Acknowledgements

We would like to thank the University of Liège-Gembloux Agro-Bio Tech and, more specifically, the research platform Terra Research & Teaching Center for the scientific stay in Belgium that made this paper possible.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [31370522,31660375].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.