409
Views
12
CrossRef citations to date
0
Altmetric
Articles

Rice-residue biochar influences phosphorus availability in soil with contrasting P status

, , &
Pages 778-791 | Received 03 Oct 2018, Accepted 29 Jun 2019, Published online: 12 Jul 2019
 

ABSTRACT

Thermo-chemical conversion of crop residues to produce biochar is an emerging strategy in the context of sustainable phosphorous (P) use and residue management. An incubation study for 90 d was conducted to investigate the effects of rice-residue biochar (0, 10, 20 and 40 g kg−1) in combination with inorganic-P (KH2PO4) (0, 25 and 50 mg kg−1) on phosphorous availability in medium- and high-P status soils. Increasing biochar addition rates alone or in combination with inorganic-P resulted in a significant increase in P pools, i.e. plant available P or Olsen-P (from 8 to 132 mg kg−1 in medium-P and 15 to 160 mg kg−1 in high-P soils), microbial biomass P and various mineral-bound inorganic-P fractions in the order (Ca-P > organic-P > Al-P > loosely held/soluble-P > Fe-P > reductant soluble-P). Further, lower phosphatase activity (19–50%) with increasing rates of biochar addition in both soils elucidates the ability of biochar to act as a long-term source of available P in the experimental soils. The results demonstrate that rice-residue biochar can directly or indirectly enhance the status of available P in soils and hence can be used as a beneficial amendment to meet the crop P demand.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.