114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Summer maize grain yield and soil carbon emission response to subsoiling before winter wheat sowing in the North China Plain

, , , ORCID Icon, &
Pages 1393-1404 | Received 12 Dec 2021, Accepted 21 Jun 2022, Published online: 04 Jul 2022
 

ABSTRACT

Food security and carbon emissions are major challenges for China and the international community. To investigate the effects of different subsoiling depths on summer maize grain yield and soil carbon emissions, in 2016 and 2018, three tillage treatments, that is, rotary tillage at the depth of 15 cm (R15), subsoiling tillage at the depth of 40 cm (S40), and subsoiling tillage at the depth of 35 cm (S35), were set before winter wheat sowing. The effects of different tillage treatments on summer maize grain yield and soil carbon emissions were analyzed. The results showed that compared with R15, subsoiling increased the microbial biomass carbon in the 20–40 cm soil layers, and improved the soil respiration rate and CO2-C cumulative emissions. The grain yield was increased by subsoiling, especially S35 (8.30% and 13.89% in 2018 and 2019, respectively). The carbon emission efficiency in S35 was significantly higher than that in S40. Altogether, we found that the best performance on grain yield of summer maize and carbon emission efficiency occurred in S35. S35 could be used to coordinate the relationship between summer maize grain yield and soil carbon emission. Therefore, this treatment can be applied and promoted in the NCP.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/03650340.2022.2093860.

Additional information

Funding

This work was financially supported in part by the National Nature Science Foundation of China (No. 32172127; 32001473), by the Key Research and Development Plan in Shandong Province, China (No. 2019GSF109054), and by the Natural Science Foundation of Shandong Province, China (No. ZR2021MC123).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.