453
Views
41
CrossRef citations to date
0
Altmetric
Articles

Comparing multivariate regression and artificial neural network to predict barley production from soil characteristics in northern Iran

&
Pages 549-565 | Received 05 Oct 2009, Accepted 17 Jan 2010, Published online: 13 Jun 2011
 

Abstract

In this study artificial neural network (ANN) models were designed to predict the biomass and grain yield of barley from soil properties; and the performance of ANN models was compared with earlier tested statistical models based on multivariate regression. Barley yield data and surface soil samples (0–30 cm depth) were collected from 1 m2 plots at 112 selected points in the arid region of northern Iran. ANN yield models gave higher coefficient of determination and lower root mean square error compared to the multivariate regression, indicating that ANN is a more powerful tool than multivariate regression. Sensitivity analysis showed that soil electrical conductivity, sodium absorption ratio, pH, total nitrogen, available phosphorus, and organic matter consistently influenced barley biomass and grain yield. A comparison of the two methods to identify the most important factors indicated that while in the ANN analysis, soil organic matter (SOM) was included among the most important factors; SOM was excluded from the most important factors in the multivariate analysis. This significant discrepancy between the two methods was apparently a consequence ofthe non-linear relationships of SOM with other soil properties. Overall, our results indicated that the ANN models could explain 93 and 89% of the total variability in barley biomass and grain yield, respectively. The performance of the ANN models as compared to multivariate regression has better chance for predicting yield, especially when complex non-linear relationships exist among thefactors. We suggest that for further potential improvement in predicting thebarley yield, factors other than the soil properties considered such as soil micronutrient status and soil and crop management practices followed during the growing season, need to be included in the models.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.