116
Views
13
CrossRef citations to date
0
Altmetric
Topical Reviews

Zn2SnO4 as an Alternative Photoanode for Dye Sensitized Solar Cells: Current Status and Future Scope

, &
Pages 147-154 | Received 08 Jul 2016, Accepted 18 Aug 2016, Published online: 05 Oct 2016
 

ABSTRACT

Dye sensitized solar cells (DSSCs), the third generation solar cell devices have been designed to produce large-scale, inexpensive, environmentally benign solar power devices having promising efficiency and lifetime. Albeit, perfect commercialization of the devices has not been possible worldwide so far, research in this area is immensely growing with promising future. Basic principles of DSSCs along with essential characteristics of working electrode, photoanode and other major components, namely photosensitizers, electrolytes and counter electrodes, which are essential to fabricate an efficient device, are concisely highlighted in this review. In addition, successive propagation of research based on the semiconducting oxides as photoanode for the DSSC device starting from binary to ternary oxides, the perspectives, selection strategies and the status with respect to performance has also been highlighted. In an effort to introduce newer oxides as appropriate alternatives to the pioneer TiO2, ZnO-SnO2 based ternary oxide Zn2SnO4 has become successful and even better than its well-studied binary counterparts ZnO and SnO2 in a short time. Taking into account the scattered reports available, the structural, microstructural, opto-electronic and physico-chemical properties together with the performance of the newly projected ternary oxide Zn2SnO4 are discussed in this short review with a prospect of its potential as an alternative photoanode in DSSCs.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.