133
Views
11
CrossRef citations to date
0
Altmetric
Articles

Optical and Photoluminescence Properties of the MgAl2O4:M (M = Ti, Mn, Co, Ni) Phosphors: Calcination Behavior and Photoluminescence Mechanism

, , , , , , , & show all
Pages 221-231 | Received 23 Oct 2019, Accepted 27 Aug 2020, Published online: 09 Dec 2020
 

Abstract

MgAl2O4:M (M = Ti, Mn, Co, Ni) phosphors were successfully prepared by a modified polyacrylamide gel method. Calcination temperature and metal particle has significant effects on the phase transition, optical and color properties of Mg Al2O4: M phosphors. Ti, M n, Co and Ni metal particles introduced into the MgAl2O4 system can produce a variety of colours from white, grayish black, blue to turquoise blue. Mn, Co and Ni metal particles added into MgAl2O4 system can extend their light absorption to visible light range, while the Ti metal particles clad into the system did not improve significantly. Co metal particles appended into the MgAl2O4 system can cause fluorescence quenching of emission peak at 395 nm and enhancement of emission peak at 405 nm, while the Ti and Mn metal particles infused into the system can bring the enhancement of visible emission peak at 425 nm. The fluorescence quenching of the peak at 395 nm can be ascribed to the wavelength of Co metal particles matching the surface plasmon absorbance band of MgAl2O4:M phosphor. A reduction in emission intensity at 425 nm can be assigned to electron transfer from the conduction band (CB) of MgAl2O4 to the CB of metal particles causing non-radiative decay.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.