52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impedance Spectroscopy Characterization of ZnCo2O4 Ceramics Obtained by the Sol-Gel Method

, , , &
Pages 136-142 | Received 26 Jan 2022, Accepted 31 Mar 2023, Published online: 27 Jun 2023
 

Abstract

In this article, structural, morphological and electrical properties of ZnCo2O4 ceramics sample were studied. ZnCo2O4 nanoparticles were synthesized using sol-gel method. Structural and morphological properties of the sample were analyzed using X-ray diffraction and scanning electron microscope. Conductance, capacitance and impedance spectroscopy characterization of ZnCo2O4 ceramics sample were analyzed in 3 kHz-1.5 MHz frequency range and 300-500 K temperature range. Nyquist diagrams of impedance and the equivalent circuit were studied for ZnCo2O4 ceramics in the temperature range of 300-500 K. Cole-Cole curves of the impedance data were found to show a semicircular arc in both low and high temperature areas, which is expressed by the equivalent electrical circuit Rs(RgCg)(RgbQCgb). Relaxation behavior was identified to be of non-Debye type. The Cole-Cole curve showed the negative temperature coefficient of resistance type behavior. Values of the activation energy corresponding to relaxation processes were found as 0.054 eV below 360 K and 0.561 eV above 360 K.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.