65
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Automatic Feedback Control of Mechanical Gas Face Seals via Clearance Control

, &
Pages 500-507 | Received 17 May 2004, Published online: 25 Mar 2008
 

Abstract

A new analytical approach is presented for designing controllers to regulate the axial clearance of a coned-face flexibly mounted stator mechanical gas face seal. The seal axial clearance is controlled by regulating the back-pressure force acting on the stator. The controllers are systematically designed using a completely analytical seal system model in which the linearized gas film stiffness and damping properties are represented by a constitutive model. An algorithm based on this model is derived to calculate the critical axial clearance where the seal is marginally stable, and a stable reference axial clearance is chosen. Proportional and proportional-plus-integral controllers are designed and analytically studied in terms of closed-loop stability and speed of response using the system model. The controllers are verified using a full numerical simulation (including nonlinear effects) of the mechanical gas face seal system, and the results demonstrate the effectiveness of both controllers to maintain the reference axial clearance.

Notes

Presented at the STLE 59th Annual Meeting in Toronto, Ontario, Canada

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.