251
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Pressure Distributions along Vertical Hydrodynamic Herringbone-Grooved Journal Bearings

&
Pages 174-181 | Received 10 Oct 2003, Accepted 20 Dec 2005, Published online: 24 Feb 2007
 

The pressure distributions generated along vertical hydrodynamic herringbone-grooved journal bearings were experimentally and numerically investigated at rotational speeds ranging from 203 to 2110 rpm. A test rig was designed and constructed for this purpose and four journals (shafts) with different herringbone-grooved patterns and radial gaps were tested: Journal 1 (with symmetrical and discontinuous grooves and 0.25-mm clearance gap), Journal 2 (with symmetrical and discontinuous grooves and 0.35-mm clearance gap), Journal 3 (with symmetrical and four continuous grooves), and Journal 4 (with asymmetrical and three continuous grooves). The journals were made of aluminum with diameters of 46.00 mm, and the sleeve was made of a transparent Plexiglas pipe for visual observation of the lubricant in the gap between the journal and the sleeve. Pressure taps were installed along the sleeve to obtain the pressure distributions using a pressure transducer. Numerical simulations were performed for these four herringbone-grooved journal bearings using commercially available computational fluid dynamic software. The computational simulations agree in trends with the experimental results and theoretical expectations.

Review led by Greg Kostrzewsky

Notes

Review led by Greg Kostrzewsky

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.