194
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A Limiting Solution for the Dependence of Film Thickness on Velocity in EHL Contacts with Very Thin Films

, , &
Pages 317-327 | Received 06 Jul 2004, Published online: 01 Mar 2012
 

Abstract

In recent years there have been substantial improvements in the capabilities of numerical modeling of elastohydrodynamic lubricant (EHL) films and it is now possible to analyze a very wide range of conditions rather than needing to rely on extrapolation using classical film thickness regression equations such as those of Dowson and Higginson. However, a new controversy has arisen concerning the film thickness-velocity dependence in EHL contacts at very low speeds and high loads, with some predictions showing a film thickness much less than that predicted by the classical equations. The present article applies the well-established limiting analysis, first presented by Grubin-Ertel, to the inlet of the EHL contact. It is shown that when the load is high and the speed is low (and the pressure gradient is very high in the inlet) an accurate resolution of the inlet pressure rise is critical for the determination of the film thickness. Discretization errors of this type might be responsible for discrepancies between the classical equations and some recently published numerical predictions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.