1,018
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Microplasma Technology and Its Applications in Analytical Chemistry

, &
Pages 581-605 | Published online: 28 Sep 2011
 

Abstract

This review article describes some existing microplasma sources and their applications in analytical chemistry. These microplasmas mainly include direct current glow discharge (DC), microhollow-cathode discharge (MHCD) or microstructure electrode (MSE), dielectric barrier discharge (DBD), capacitively coupled microplasmas (CCμPs), miniature inductively coupled plasmas (mICPs), and microwave-induced plasmas (MIPs). The historical development and recent advances in these microplasma techniques are presented. Fundamental properties of the microplasmas, the unique features of the reduced size and volume, as well as the advantageous device structures for chemical analysis are discussed in detail, with the emphasis toward detection of gaseous samples. The analytical figures of merit obtained using these microplasmas as molecular/elemental-selective detectors for emission spectrometry and as ionization sources for mass spectrometry are also given in this review article.

Acknowledgements

The authors are grateful to the financial support from National Recruitment Program of Global Experts (NRPGE), the Hundred Talents Program of Sichuan Province (HTPSP), and the Startup Funding of Sichuan University for setting up the Research Center of Analytical Instrumentation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 678.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.