421
Views
21
CrossRef citations to date
0
Altmetric
Articles

Validation of Airborne Hyperspectral Imagery from Laboratory Panel Characterization to Image Quality Assessment: Implications for an Arctic Peatland Surrogate Simulation Site

, , &
Pages 476-508 | Received 24 Jan 2019, Accepted 27 Jul 2019, Published online: 24 Aug 2019
 

Abstract

Calibration/validation (cal/val) practices applied to airborne hyperspectral imagery of Arctic regions were developed and assessed as an integrated up-scaling methodology that considers: (i) calibration of a laboratory reflectance reference panel; (ii) cross-calibration of multiple field panels; (iii) quality assurance checks of field spectroscopy data; and, (iv) comparison of results with airborne hyperspectral imagery. Overall errors of up to 27% were reduced to <4% using these methods. Calibration results of the laboratory panel provided an improvement of 1% in the visible, near and lower shortwave infrared regions with respect to best estimates achievable using manufacturer supplied calibration data. This improvement was transferred to field panels using an in-house cross-calibration approach that also allowed panels to be assessed for degradation that occurs during field deployment. Comparison of the field spectroscopy results of four cal/val targets with hyperspectral imagery following atmospheric correction identified discrepancies from 1% to 4% (absolute) between 450 nm and 1050 nm, with errors as high as 27% at lower wavelengths. Application of scene-based refinements using two cal/val targets reduced this error across the entire spectral range (<4%) with the most significant improvements below 500 nm. These methods also have important implications to satellite image analysis, especially in Arctic and northern regions.

RÉSUMÉ

Nous avons développé et évalué de nouvelles pratiques d'étalonnage et de validation (E/V) appliquées aux images hyperspectrales aéroportées provenant de régions arctiques en prenant en compte de (i) l'étalonnage d'un panneau de référence de réflectance de laboratoire; (ii) de l’étalonnage croisé de plusieurs panneaux de terrain; (iii) des contrôles d'assurance qualité des données de spectroscopie de terrain; et (iv), la comparaison des résultats avec l'imagerie hyperspectrale aéroportée. En utilisant ces méthodes, l’erreur globale allant jusqu'à 27% a été réduites à < 4%. Les résultats d'étalonnage du panneau de laboratoire ont fourni une amélioration de 1% dans les régions du spectre visible, proche infrarouge et infrarouge inférieur par rapport aux meilleures estimations pouvant être atteintes à l'aide des données d'étalonnage fournies par le fabricant. Cette amélioration a été transférée aux panneaux de terrains utilisant une approche interne d'étalonnage croisé ce qui a permis d'évaluer la dégradation des panneaux lors de leur déploiement sur le terrain. La comparaison des résultats de spectroscopie sur le terrain de quatre cibles E/V avec une imagerie hyperspectrale ayant été soumise à une correction atmosphérique a révélé des écarts absolus de 1% à 4% entre les longueurs d’onde de 450 nm et 1050 nm. L’erreur peut atteindre les 27% à des longueurs d'onde inférieures. L'application d'améliorations basées sur la scène en utilisant deux cibles E/V a permis de réduire cette marge d’erreur sur toute la plage spectrale (<4%), les améliorations les plus significatives étant sous la barre des 500 nm. Ces méthodes ont également des implications importantes pour l'analyse d'images satellitaires, en particulier dans les régions arctiques et septentrionales.

Acknowledgments

Funding for this project was provided by the European Space Agency (ESA) Sensor Performance, Products and Algorithms (SPPA) element of the Earth Observation ground segment. We express our appreciation to DRDC-Valcartier for the loan of the CASI-1500 instrument as well as the calibration tarps that were used in this work. We acknowledge the contributions of the students that participated in the field acquisition for numerous field campaigns. The support from NRC-FRL staff was instrumental for the overall success of airborne data collection at Mer Bleue. Finally, we would like to recognize the contribution of Dr. George Leblanc over the past 15 years in the establishment and development of the Hyperspectral team and capabilities at the NRC Flight Research Laboratory.

Notes

1 A spectral lamp built into newer systems allowing the spectral alignment at several spectral locations to be determined was not available in the hyperspectral systems used in this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.