162
Views
0
CrossRef citations to date
0
Altmetric
Fundamental Research / Recherche fondamentale

Modelling the Oceanic Advection of Pollutants Spilt Along with the Northwest Passage

ORCID Icon &
Pages 88-101 | Received 10 Feb 2021, Accepted 07 Mar 2022, Published online: 09 May 2022
 

ABSTRACT

The Arctic sea ice is dramatically retreating in concentration, thickness, and duration. The larger and longer-lasting periods of open water will likely lead to increase trans-Arctic ship traffic, which then increases the risk of accidents and of pollutant spills. In this study, we focus on the potential oceanic circulation pathways of pollutants that may be spilt along with the Northwest Passage in the Canadian Arctic. We used a high-resolution numerical model and a Lagrangian particle tracking tool to simulate the advection of pollutants released in and within proximity to the Canadian Arctic Archipelago. We released 5000 virtual particles over 24 main release sites every 10 days during the operating season (June–October) for 12 years (2004–2015). For each simulation, we examined the circulation pathway and computed particles’ spreading area, distances travelled, subsurface spread, and the variability and uncertainty of their distribution during the two-year simulation duration. We analysed these factors with respect to the dominant oceanic circulation of where the particles were initially seeded and the role of atmospheric circulation and were able to identify three main circulation regimes and eight small-scale regimes. This study highlights the role of oceanic advection in the spreading of particles and determines that particles released in the eastern study area exhibited the largest spreading area as the majority propagated into the North Atlantic Ocean rapidly.

RÉSUMÉ

[Traduit par la redaction] La glace de mer arctique recule de façon spectaculaire en termes de concentration, d’épaisseur et de durée. Les périodes d’eau libre plus longues et plus importantes entraîneront probablement une hausse du trafic maritime transarctique, ce qui accroît le risque d’accidents et de déversements de polluants. Dans cette étude, nous mettons l’accent sur les voies de circulation océaniques potentielles des polluants qui peuvent être déversés le long du passage du Nord-Ouest dans l’Arctique canadien. Nous avons utilisé un modèle numérique à haute résolution et un outil de suivi lagrangien des particules pour simuler l’advection des polluants rejetés dans et à proximité de l’archipel arctique canadien. Nous avons libéré 5 000 particules virtuelles sur 24 sites de libération principaux tous les 10 jours pendant la saison d’exploitation (juin à octobre) pendant 12 ans (2004 à 2015). Pour chaque simulation, nous avons examiné la voie de circulation et calculé la zone de propagation des particules, les distances parcourues, la propagation sous la surface, ainsi que la variabilité et l’incertitude de leur distribution pendant les deux années de la simulation. Nous avons analysé ces facteurs en fonction de la circulation océanique dominante de l’endroit où les particules ont été initialement ensemencées et du rôle de la circulation atmosphérique et nous avons pu déterminer 3 régimes de circulation principaux et 8 régimes à petite échelle. Cette étude met en évidence le rôle de l’advection océanique dans la propagation des particules et détermine que les particules libérées dans la zone d’étude orientale présentaient la plus grande zone de propagation, la majorité se propageant rapidement dans l’océan Atlantique Nord.

Acknowledgements

The authors are grateful to the NEMO and development team and the Drakkar project for providing the model and continuous guidance, and to Westgrid and Compute Canada for computational resources to perform our simulations as well as archival of model experiments (http://www.computecanada.ca). This work is a contribution to ArcticNet, a Network of Centres of Excellence Canada. Lastly, the authors wish to thank the editor and two anonymous reviewers, whose work has greatly improved this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by an NSERC Discovery Grant (Natural Sciences and Engineering Research Council of Canada) [grant number RGPIN 04357].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 80.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.