26
Views
44
CrossRef citations to date
0
Altmetric
Journal Article

Aluminum and bone disorders: with specific reference to aluminum contamination of infant nutrients.

&
Pages 199-214 | Published online: 27 Aug 2013
 

Abstract

Aluminum (Al) impairment of bone matrix formation and mineralization may be mediated by its direct effect on bone cells or indirectly by its effect on parathyroid hormone and calcium metabolism. Its toxic effects are proportional to tissue Al load. Al contamination of nutrients depends on the amount of Al present naturally in chemicals or from the manufacturing process. Intravenous calcium, phosphorus, and albumin solutions have high Al (greater than 500 micrograms/L), whereas crystalline amino acid, sterile water, and dextrose water have low Al (less than 50 micrograms/L) content. Enteral nutrients including human and whole cow milk have low Al, whereas highly processed infant formulas with multiple additives, such as soy formula, preterm infant formula, and formulas for specific disorders are heavily contaminated with Al. Healthy adults are in zero balance for Al. The gastrointestinal tract excludes greater than 95% of dietary Al, and kidney is the dominant organ for Al excretion. However, even with normal renal function, only 30-60% of an Al load from parenteral nutrition is excreted in the urine, resulting in tissue accumulation of Al. The risk for Al toxicity is greatest in infants with chronic renal insufficiency, recipients of long term parenteral nutrition, i.e., no gut barrier to Al loading, and preterm infants with low Al binding capacity. The rapid growth of the infant would theoretically potentiate Al toxicity in all infants, although the critical level of Al loading causing bone disorders is not known. To minimize tissue burden, Al content of infant nutrients should be similar to “background” levels, i.e., similar to whole milk (less than 50 micrograms/L).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.