777
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Non-Zygotic Embryogenesis in Hardwood Species

, , , , , , & show all
Pages 29-97 | Published online: 14 Feb 2019
 

Abstract

Hardwood species are valuable biological resources that have an important role in the economy and ecology of ecosystems worldwide. Non-zygotic or somatic embryogenesis (SE) is a powerful tool in plant biotechnology as it is a form of clonal propagation, amenable to cryopreservation of valuable germplasm and genetic transformation including gene editing. The SE process involves five steps and includes somatic embryo induction, proliferation, maturation, plantlet conversion, and subsequent plant acclimatization. This review aims to provide a general overview of these steps in different SE systems developed for hardwood species. Factors that influence the induction stage such as the age of the donor plant, genotype and culture media are discussed. The role of different explant types, i.e. zygotic embryos and non-zygotic tissues, such as roots, flower tissues, nodes, internodes, leaves or shoot apices, in SE induction are especially emphasized. Histological studies of the origin of somatic embryos and the sequence of events leading to their development from initial explants are assessed. Maintenance of embryogenic capacity carried out by subculture of embryogenic inocula on semisolid or liquid media through cell suspension cultures or by temporary immersion systems is described. At present, the main concerns associated with the application of SE for large-scale propagation of elite hardwoods are related to the embryo maturation, germination, and plantlet conversion steps, and these are highlighted in this review. Finally, molecular aspects associated with somatic embryo induction and development are also described. Attempts to overcome the hurdles identified in the embryogenic process, and future lines of research are proposed.

Acknowledgments

We are grateful to Dr. Herve Etienne and Dr. Fred Georget for providing photographs of temporal immersion systems.

Additional information

Funding

This research was partly funded by MINECO (Spain) through project AGL2016-76143-C4-4-R, by the FCT (Portugal) through funding of the Center for Functional Ecology and by the project ReNATURE Centro 2020 (Centro-01-0145-FEDER-000007).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 539.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.