342
Views
0
CrossRef citations to date
0
Altmetric
Articles

Plant Prenylflavonoids and Prenyltransferases Related to their Biosynthesis

, , , , , & ORCID Icon show all
Pages 34-48 | Published online: 12 Sep 2023
 

Abstract

As the most widely distributed phenolic compounds in the plant kingdom, flavonoids play an integral role in plant reproduction and defense. Also, they represent many important quality traits of edible plants like color and antioxidants, and have a variety of biological activities beneficial to human health. To diversify the functions of synthesized flavonoids, plants have evolved various enzymes to perform structural modifications on different flavonoid backbones. One of these modifications is prenylation, which refers to the attachment of an isoprenoid moiety, most commonly a prenyl (C5) group. Numerous structure-activity analyses of prenylflavonoids have shown that isopentenyl substitutions at specific sites can significantly expand and enhance their chemical properties, bioactivities and potential health benefits. This review summarizes prenylflavonoids reported so far in all plant species and highlights the current knowledge on naturally occurring prenyltransferases from different biological sources that can act on plant flavonoids to synthesize prenylflavonoids. Most of them have strict flavonoid substrate- and regio-specificities, and they provide a valuable gene repository to facilitate the efficient scale-up production of flavonoids with specific prenylation patterns in cell factories. To truly achieve this goal, it is necessary to explore more diversified natural prenyltransferases, and to optimize the bioreactors system such as pathway regulation and modular co-culture engineering in the future.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is funded by the Natural Science Foundation of Guangdong Province [2021A1515011258], National Natural Science Foundation of China [32071809] and South China Botanical Garden, Chinese Academy of Sciences [Grant No: QNXM-04].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 539.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.