155
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

4-Chlorbenzoyl Berbamine, a Novel Derivative of the Natural Product Berbamine, Potently Inhibits the Growth of Human Myeloma Cells by Modulating the NF-κB and JNK Signalling Pathways

, , , , , , , & show all
Pages 496-505 | Received 02 Mar 2016, Accepted 08 Sep 2016, Published online: 21 Oct 2016
 

ABSTRACT

Multiple myeloma (MM) remains incurable despite the development and the use of new agents. In our studies, we found that 4-chlorbenzoyl berbamine (BBMD9), a novel synthetic derivative of berbamine, inhibited the proliferation of MM cells in dose- and time-dependent manners. Flow cytometric (FCM) analysis revealed that MM cells were arrested in the G1 phase and that apoptotic cells increased in a time-dependent manner. Moreover, the BBMD9 treatment downregulated IKKα and IKKβ, inhibited p-IκBα, and blocked p65 nuclear localization. Consistently, NF-κB downstream targets, such as cyclinD1 and survivin, were also reduced. In addition, BBMD9 phosphorylated the activity of JNK and c-Jun.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

 This project was supported by the National Nature Science Foundation of China (No. 81201869), the Nature Science Foundation of Zhejiang Province (No. LQ12H16012), and the Nature Science Foundation of Zhejiang Province (No. LY14H160032).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,193.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.