133
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

An Impact of Stochastic Dynamic Boundary Conditions on the Evolution of the Cahn-Hilliard System

&
Pages 613-639 | Received 04 Aug 2006, Accepted 13 Oct 2006, Published online: 07 May 2007
 

Abstract

Nonlinear systems are often subject to random influences. Sometimes the noise enters the system through physical boundaries and this leads to stochastic dynamic boundary conditions. A dynamic, as opposed to static, boundary condition involves the time derivative as well as spatial derivatives for the system state variables on the boundary. Although stochastic static (Neumann or Dirichet type) boundary conditions have been applied for stochastic partial differential equations, not much is known about the dynamical impact of stochastic dynamic boundary conditions. The purpose of this article is to study possible impacts of stochastic dynamic boundary conditions on the long term dynamics of the Cahn-Hilliard equation arising in the materials science. We show that the dimension estimation of the random attractor increases as the coefficient for the dynamic term in the stochastic dynamic boundary condition decreases. However, the dimension of the random attractor is not affected by the corresponding stochastic static boundary condition.

Mathematics Subject Classification:

We thank Alain Miranville and Dirk Blomker for helpful comments. This work was partly supported by the NSF Grants DMS-0209326 & DMS-0542450.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 901.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.