469
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Combining CMPO and HEH[EHP] for Separating Trivalent Lanthanides from the Transuranic Elements

, &
Pages 567-577 | Published online: 05 Sep 2013
 

Abstract

Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) into a single process solvent for separating transuranic elements from liquid high-level waste is explored. The lanthanides and americium can be co-extracted from HNO3 into 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane. The extraction is relatively insensitive to the HNO3 concentration within 0.1–5 mol/L HNO3. Americium can be selectively stripped from the CMPO/HEH[EHP] solvent into a citrate-buffered N-(2-hydroxyethyl)ethylenediaminetriacetic acid solution. Separation factors >14 can be achieved in the range pH 2.5–3.7, and the separation factors are relatively insensitive to pH—a major advantage of this solvent formulation.

ACKNOWLEDGMENT

This work was funded by the U.S. Department of Energy, Office of Nuclear Energy, through the Fuel Cycle Research and Development Program. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.