235
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Synergistic Solvent Extraction of Lanthanides(III) with Mixtures of 4-benzoyl-3-methyl-1-phenylpyrazol-5-one and Some Novel Carbamoyl- and Phosphorylmethoxymethylphosphine Oxides

, , &
Pages 492-507 | Published online: 06 Jun 2014
 

Abstract

The solvent extraction of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y from weak acidic hydrochloric acid solutions into an organic phase containing 4-benzoyl-3-methyl-1-phenylpyrazol-5-one (HP) and neutral tridentate organophosphorus ligands R2P(O)CH2OCH2C(O)NBu2 R = Bu (I), R = Ph (II) and R2P(O)CH2OCH2P(O)R12 R = R1 = Bu (III); R = Bu, R1 = Ph (IV); R = R1 = Ph(V) has been studied. A considerable synergistic effect was observed in the presence of HP in the organic phase containing tetraoctyldiglycolamide (TODGA) and neutral organophosphorus ligands I - V. A successive replacement of C(O)NAlk2 groups in the diglycolamide extractant molecule by P(O)Ph2 groups leads to an increase in the extraction efficiency of Ln(III) ions when toluene was used as diluent. Phosphoryl-containing podand I possess a higher extraction efficiency towards Ln(III) ions than TODGA. The extraction equilibrium was investigated and the equilibrium constants were calculated. It was found that the lanthanide(III) ions are extracted as LnLP3 and LnL2P3 complexes with mixtures of HP and I in toluene from weak acidic solutions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.