246
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Extraction of some Hexavalent Actinide Ions from Nitric Acid Medium using Several Substituted Diglycolamides

, , &
Pages 637-649 | Published online: 03 Jul 2014
 

Abstract

Several substituted diglycolamides, namely TPDGA, THDGA, TODGA, and TDDGA, were evaluated in a comparative study on the extraction of hexavalent actinide ions such as UO22+, NpO22+, and PuO22+ from nitric acid medium. The acid extraction constants (KH) for the diglycolamides were determined to be 3.8 ± 0.6, 1.6 ± 0.1, 4.1 ± 0.4, and 1.4 ± 0.2 for TPDGA, THDGA, TODGA, and TDDGA, respectively. Though metal ion extraction generally increased with increasing the feed acid concentration, the nature of the extracted species changed with aqueous-phase acidity. While complexes of the type MO2(NO3)2·nL (where L is the diglycolamide extractant and n is 1 and 2) were found to be extracted at 1 M HNO3, the average number of ligand molecules associated with the complex decreased to ˜1 when the nitric acid concentration increased to 3 M. These results have great significance from the actinide separation point of view, as the actinides ions can be made virtually inextractable by adjusting their oxidation state. The thermodynamic parameters were also calculated, which indicated spontaneous reactions with large exothermicities.

ACKNOWLEDGMENTS

The authors thank Dr. A. Goswami, Head, Radiochemistry Division, for his keen interest and constant encouragement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.