280
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Advanced TALSPEAK Separations Using a Malonate Buffer System

&
Pages 346-361 | Published online: 11 Mar 2015
 

Abstract

The extraction behavior of lanthanides and americium has been evaluated under Advanced TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorus-reagent Extraction from Aqueous Komplexes) conditions using malonic acid as the aqueous buffering agent. The extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) was used as an organic phase liquid cation exchanger in n-dodecane diluent, while N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) served as a selective aqueous holdback reagent. Extractions conducted from malonate media exhibit a pH profile that flattens as the concentration of malonate is increased up to 1.0 M malonate. This relatively flat extraction behavior from pH 2.5–4.0 is reminiscent of previous studies on Advanced TALSPEAK in lactate media. The extraction kinetics with other carboxylic acid buffers as well as the effects of varying HEDTA, HEH[EHP], and malonate concentration are compared.

Additional information

Funding

The work presented here was supported by the U.S. Department of Energy, Office of Nuclear Energy Research and Development program Sigma Team Minor Actinide Separations project and in part by the Nuclear Energy University Program Project 10-881 under contract INL 14002-20.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.