255
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical Investigation of Pyridine Derivatives as High Energy Materials

, , , , &
Pages 172-183 | Published online: 20 Nov 2013
 

Abstract

In this work, properties of polynitro-bridged pyridine derivatives were systemically studied at the B3LYP/6-31G(d) level. Gas-phase heats of formation (HOFs) for the designed compounds were calculated using isodesmic reactions, and their solid-phase HOFs were estimated using the Politzer approach. All designed compounds possess large solid-phase HOFs, larger than 700 kJ/mol. Based on the predicted crystal densities, solid-phase HOFs, and chemical energies, detonation properties were evaluated by means of Kamlet-Jacobs empirical equations. The results show that detonation velocities and pressures of all of the designed compounds are above 9.30 km/s and 40.00 GPa, respectively. In addition, bond dissociation energy (BDE) was employed to investigate their thermal stability. Considering solid-phase HOFs, detonation performance, and thermal stability, most of the designed compounds meet the requirements of high energy density materials (HEDMs).

Notes

a Calculated values obtained from atomization energy at the the G2(MP2) level.

b Experimental value derived from Lide [Citation12].

a Related values derived from Talawar et al. [Citation26].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 554.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.