510
Views
24
CrossRef citations to date
0
Altmetric
Short Communications

Fabrication of three-dimensional TKX-50 network-like nanostructures by liquid nitrogen-assisted spray freeze-drying method

, , , , , , & show all
Pages 356-364 | Published online: 23 Apr 2019
 

ABSTRACT

Design and fabrication of micro- and nanostructures for energetic materials have attracted more attention recently to improve safety properties and enhance detonation performance. Exploring and developing dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) with unique microstructures, an emerging high-energy-density material with superior comprehensive properties, is of great significance for the potential applications. In this work, we reported that three-dimensional (3D) TKX-50 network-like nanostructures were designed and fabricated successfully via the liquid nitrogen-assisted spray freeze-drying method. Characterization results suggested 3D TKX-50 network-like nanostructures were constructed by self-assembly of small nanoparticles. Furthermore, a nucleation-and-growth self-assembly formation mechanism of the network-like nanostructures depended on the different concentrations of the aqueous solution of TKX-50 was proposed in detail based on the experimental results. More interestingly, thermal analysis results demonstrated these novel 3D TKX-50 network-like nanostructures are much easier to be activated and have a lower decomposition temperature than the raw material, due to decrease in particle sizes, and the impact sensitivity of 3D TKX-50 network-like nanostructures become more sensitive than that of raw TKX-50. Their friction sensitivity of as-prepared samples is similar to the raw materials. Therefore, this work could provide a new prospect for fabrication and application of TKX-50 nanostructures.

Acknowledgments

We thank Jia Lei (Southwest University of science and technology of China, Mianyang, China) for help.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Funding

This work was supported by Science Foundation of North University of China (No.: XJJ2016012).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 554.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.