Publication Cover
Drying Technology
An International Journal
Volume 23, 2005 - Issue 9-11
256
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Pore-Level Modeling of Isothermal Drying of Pore Networks Accounting for Evaporation, Viscous Flow, and Shrinking

&
Pages 2007-2019 | Published online: 06 Feb 2007
 

Abstract

Simulation results of pore-level drying of non-hygroscopic, non-rigid, liquid-wet porous media are presented. Two- and three-dimensional pore networks represent pore spaces. Two kinds of mechanisms are considered: evaporation and hydraulic flow. The process is considered under isothermal conditions. Capillary forces thus dominate over viscous forces and the drying is considered as a modified form of invasion percolation. Liquid in pore corners allows for hydraulic connection throughout the network. During drying, liquid is replaced by vapor by two fundamental mechanisms: evaporation and pressure gradient–driven liquid flow. The development of capillary pressure as menisci turn concave induces shrinkage of the matrix, which contributes to the pressure gradient that drives liquid toward the surface of the network. Using Monte Carlo simulation, we find evaporation and drainage times; the shortest calculated indicates the controlling mechanism. Here we report distributions of liquid and vapor as drying time advances. For the calculation of transport properties, details of pore space and displacement are subsumed in pore conductances. Solving for the pressure field in each phase, vapor and liquid, we find a single effective conductance for each phase as a function of liquid saturation. Along with the effective conductance for the liquid-saturated network, the relative permeability of liquid and diffusivity of vapor are calculated.

ACKNOWLEDGMENT

Financial support from CONICYT-Chile through project FONDECYT No. 2990061 and from the Research Direction of University of Concepción through project DIUC 203.096.057-1.0 is greatly appreciated. L.S. thanks University of Bío-Bío for partial financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.