Publication Cover
Drying Technology
An International Journal
Volume 23, 2005 - Issue 9-11
85
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A Study of Surface Wetting When Coating Paper

, &
Pages 2105-2117 | Published online: 06 Feb 2007
 

Abstract

The objective of this work will be to look at basic micro-level simulations of liquid state and movement. Defining liquid movement at fiber-coating boundaries is essential when modeling surface wetting of paper fibers. Drying studies have shown that chemical additives in base paper or coating color may reduce or increase quality, productivity, and energy efficiency considerably. The latest question is, Which are the factors that are significantly influencing liquid movement at fiber-coating boundaries? A phenomenon of less liquid drainage at lower paper moisture content is studied in this work together with the fiber hornification process. Fiber hornification is a complex change in the physicochemical properties of the fiber surface and the state of boundary molecules. Another important objective is to show how hornification may be accounted for in basic calculations. This while, printing properties of paper (mottling, etc.), may then be connected to the formation of the base paper and its drying history, explaining in more detail the importance of microlevel physicochemical property changes at fiber surfaces.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.