Publication Cover
Drying Technology
An International Journal
Volume 23, 2005 - Issue 9-11
332
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Microwave-Vacuum Drying Kinetics of Pharmaceutical Powders

, &
Pages 2131-2146 | Published online: 06 Feb 2007
 

Abstract

The drying kinetics (maximum drying rate, drying constants) and center temperature of selected powder (aspirin, paracetamol, lactose, and maize starch)–solvent (water, ethanol, methanol, and acetone) systems were monitored during microwave-vacuum drying. An experimental microwave-vacuum system (650 W and 2.45 GHz) operated at 61–81 kPa was used. The drying rate profile did not vary with the powder–solvent system; an initial warming-up period was followed by a constant-rate stage and two falling-rate periods. However, the drying kinetics were found to be both powder and solvent dependent, with the drying times for acetone-, ethanol-, and methanol-wetted materials being considerably shorter (up to 89.8%) than those of samples containing water. Although the general form of the temperature profile (short warming-up period, constant-rate stage, and decreasing temperature phase) was similar for all systems, the maximum temperatures varied quite significantly with solvent type, ranging from highest to lowest in the order water-ethanol-methanol-acetone. For most powder–solvent systems, reduced operating pressure facilitated increased drying rates and thus shorter drying times.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of AstraZeneca.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.