Publication Cover
Drying Technology
An International Journal
Volume 24, 2006 - Issue 7
872
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Emerging Biodrying Technology for the Drying of Pulp and Paper Mixed Sludges

, &
Pages 863-878 | Published online: 06 Feb 2007
 

Abstract

Effective sludge management is increasingly critical for pulp and paper mills due to high landfill costs and complex regulatory frameworks for options such as sludge landspreading and composting. Sludge dewatering challenges are exacerbated at many mills due to improved in-plant fiber recovery coupled with increased production of secondary sludge, leading to a mixed sludge with a high proportion of biological matter that is difficult to dewater. Various drying technologies have emerged to address this challenge of sludge management, whose objective is to increase the dryness of mixed sludge to above critical levels (≈42% dryness) for efficient and economic combustion in the boiler for steam generation. The advantages and disadvantages of these technologies are reviewed in this article, and it is found that many have significant technical uncertainties and/or questionable economics. A biodrying process, enhanced by biological heat generation under forced aeration, is introduced that has significant promise. A techno-economic analysis of the batch biodrying process at a case study mill showed an annual operating cost savings of about $2 million, including the elimination of landfilling practices and supplemental fuel requirements in the boiler. It was shown that if a biodrying residence time of less than 4 days can be achieved, payback periods of 2 years or less can result in many mills. The potential for the development of a continuous biodrying reactor and the fundamentals of its mathematical modeling are thus presented. Compared to the batch reactor configuration, it is expected that the continuous process would result in improved process flexibility and controllability, lower investment and operating costs due to shorter residence times, and an improved potential to fit into the crowed pulp and paper mill site.

ACKNOWLEDGEMENTS

This work was completed with the financial assistance of the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.