Publication Cover
Drying Technology
An International Journal
Volume 25, 2007 - Issue 4
155
Views
10
CrossRef citations to date
0
Altmetric
Part 2: Drying R&D in China

Study on Heat Transfer Enhancement of Oscillating-Flow Heat Pipe for Drying

, , , , , & show all
Pages 723-729 | Published online: 23 Apr 2007
 

Abstract

The application of oscillating-flow heat pipe (OFHP) in drying is of great potential. In this article, two methods are proposed to enhance the heat transfer of OFHP: (1) pulse heating is adopted instead of conventional continuous heating; and (2) a tube with a nonuniform cross section is introduced. Experiments on the effects of these two methods have been studied in comparison with ordinary OFHP. Experimental results indicate that using the pulse heating and the nonuniform cross section channel can improve the oscillating process and the heat transport performance in the OFHP. The heat transfer rate of pulse heating OFHP is higher than that of the continuous by 15–38%, and the effective thermal conductivity is higher by 12–63% at the same heating power. The effective thermal conductivity and the heat transfer rate of the nonuniform cross section heat pipe are also higher than that of the uniform cross section heat pipe when the heating power is more than 100 W.

ACKNOWLEDGEMENTS

This work is supported by project No. 50606011 of the Chinese National Science Foundation and the Beijing Key Laboratory of Energy Safety and Clean Utilization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.