Publication Cover
Drying Technology
An International Journal
Volume 25, 2007 - Issue 9
192
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Condenser Coil Optimization and Component Matching of Heat Pump Dryer

&
Pages 1571-1580 | Published online: 10 Sep 2007
 

Abstract

The heat pump dryer is an energy-efficient piece of drying equipment, but due to its complicated system of the two interactive working fluids (refrigerant and drying air), the optimum design remains the question. A heat exchanger is the major component influencing the heat pump dryer (HPD) performance. This article reports a study to optimize the condenser coil of the HPD and the component matching in order to obtain optimum performance. The study was carried out by a mathematical model for system simulation and followed by experimental verification. Five HPD configurations were studied, including different designs in air and refrigerant flow paths. It was found that the closed-loop HPD with air bypassing over the evaporator is the most appropriate configuration. The proper coil design is 2-row, 2-circuit configuration with optimum refrigerant mass flow rate of 16–20 g/s/circuit. The optimum air flow rate was found to be in the range of 0.6–0.8 kg/s. The corresponding number of coil modules is 8.

ACKNOWLEDGEMENTS

The authors thank the Thailand Research Fund and the Joint Graduate School on Energy and Environment for the financial support to this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.