Publication Cover
Drying Technology
An International Journal
Volume 25, 2007 - Issue 5
677
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of Microwave-Vacuum Drying of Button Mushrooms Using Response-Surface Methodology

&
Pages 901-911 | Published online: 06 Jun 2007
 

Abstract

Button mushrooms (Agaricus bisporous) were dried in a microwave-vacuum dryer up to a final moisture content of around 6% (d.b.). The effect of microwave power level (115 to 285 W), system pressure (6.5 to 23.5 kPa), and slice thickness (6 to 14 mm) on drying efficiency and some quality attributes (color, texture, rehydration ratio, and sensory attributes) of dehydrated mushrooms were analyzed by means of response surface methodology. A rotatable central composite design was used to develop models for the responses.Analysis of variance showed that a second-order polynomial model predicted well the experimental data. The system pressure strongly affected color, hardness, rehydration ratio, and sensory attributes of dehydrated mushrooms. A lower pressure during drying resulted in better quality products. Optimum drying conditions of 202 W microwave power level, 6.5 kPa pressure, and 7.7 mm slice thickness were established for microwave vacuum drying of button mushrooms. Separate validation experiment was conducted at the derived optimum conditions to verify the predictions and adequacy of the models.

Notes

∗∗∗Significant at p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.