Publication Cover
Drying Technology
An International Journal
Volume 25, 2007 - Issue 6
167
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Multi-Zone Drying Schemes for Lowering the Residual Solvent Content during Multi-Component Drying of Semicrystalline Polymers

, &
Pages 985-992 | Published online: 16 Jun 2010
 

Abstract

The development of a glassy skin in multicomponent semicrystalline polymer systems limits the diffusion of solvents out of the system and increases residual solvent levels. Based on the results of a mathematical model that we had previously developed, we have proposed a multi-zone drying scheme aimed at lowering the residual solvent levels by taking into account the effect of interactions between the various solvents as predicted by the model. This article focuses on the application of this model to develop optimal drying schemes and to verify the effectiveness of these predictions using experimental techniques. The mathematical model developed previously to study the diffusion of multiple solvents and changes in the crystallinity of semicrystalline polymer systems during drying incorporates many features including Vrentas-Duda diffusion theory, solvent-induced crystallization kinetics, as well as glass transition effects and skinning of the film. The multi-zone drying system was developed by varying the drying temperature in each zone as well as changing the partial pressure of individual solvents during the drying process. The effectiveness of the multi-zone drying schemes predicted by the model was validated experimentally using thermogravimetric methods. The polymer-solvent system chosen was a poly(vinyl alcohol)-water-methanol system. Our experimental data suggested that the multi-zone drying schemes were superior to a single-zone drying system through direct comparison. Further examination of the mathematical model yielded individual solvent profiles and these data reaffirmed our conclusions that a multi-zone drying scheme has the ability to reduce the effect of solvent trapping and thus lower the overall residual solvent content.

ACKNOWLEDGEMENTS

The authors thank the National Science Foundation for financial support through NSF-CTS0107168.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.